The Ball-Proximal (="Broximal") Point Method: a New Algorithm, Convergence Theory, and Applications
Non-smooth and non-convex global optimization poses significant challenges across various applications, where standard gradient-based methods often struggle. We propose the Ball-Proximal Point Method, Broximal Point Method, or Ball Point Method (BPM) for short – a novel algorithmic framework inspired by the classical Proximal Point Method (PPM), which, as we show, sheds new light on several foundational optimization paradigms and phenomena, including non-convex and non-smooth optimization, acceleration, smoothing, adaptive stepsize selection, and trust-region methods. At the core of BPM lies the ball-proximal ("broximal") operator, which arises from the classical proximal operator by replacing the quadratic distance penalty by a ball constraint. Surprisingly, and in sharp contrast with the sublinear rate of PPM in the nonsmooth convex regime, we prove that BPM converges linearly and in a finite number of steps in the same regime. Furthermore, by introducing the concept of ball-convexity, we prove that BPM retains the same global convergence guarantees under weaker assumptions, making it a powerful tool for a broader class of potentially non-convex optimization problems. Just like PPM plays the role of a conceptual method inspiring the development of practically efficient algorithms and algorithmic elements, e.g., gradient descent, adaptive step sizes, acceleration, and "W" in AdamW, we believe that BPM should be understood in the same manner: as a blueprint and inspiration for further development.